

Route Planning and Profit Evaluation Dr. Peter Belobaba

Istanbul Technical University Air Transportation Management M.Sc. Program Network, Fleet and Schedule Strategic Planning Module 14 : 31 March 2016

Lecture Outline

Route Planning and Evaluation

- Route evaluation issues
- Route planning models
- Practical and strategic issues

Route Evaluation Example: Montreal-Milan

Profit estimates for daily non-stop service

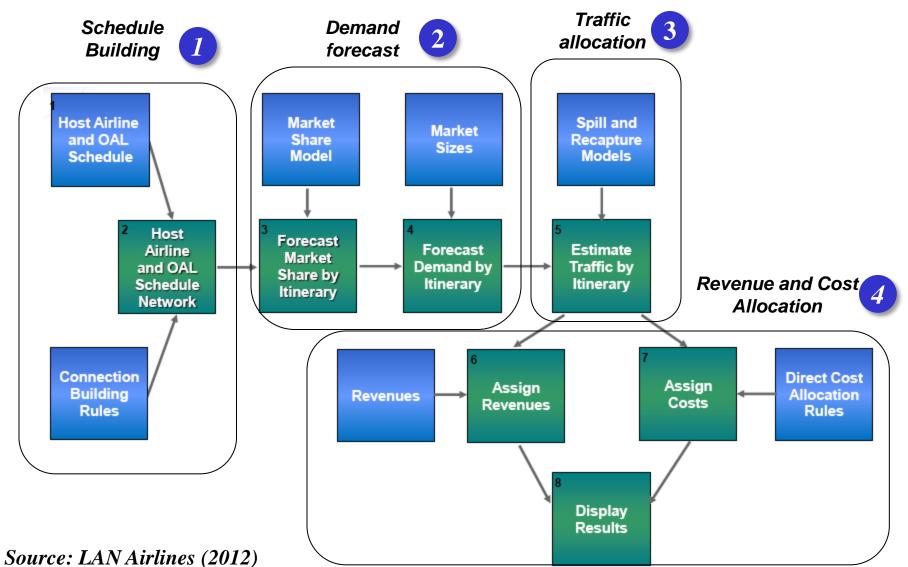
• Measuring Route Profitability (Baldanza article)

- Incremental revenues and costs of a flight/route
- Network contribution and costs
- Example: Different estimates of route profitability

Route Planning and Evaluation

- The process of route planning and evaluation involves the selection of routes to be flown
- Route selection is both strategic and tactical:
 - Essential component of an integrated network strategy or "vision"
 - Route characteristics affect the types of "products" offered to travelers (e.g., need for business and first class products)
 - Stage length and route characteristics affect airline cost structure, as longer routes flown with bigger aircraft have lower unit costs
 - Route requirements provide feedback loop to fleet planning
 - Unexpected route opportunities occur with changes to environment (bankruptcies, competitor withdrawals, new bilateral agreements)

Route Planning and Profitability


• Estimating route profitability requires a detailed evaluation approach:

- Demand, cost and revenue forecasts required for specific route, perhaps for multiple years into the future
- Assumed market share of total demand based on models of passenger choice of different airline and schedule options
- Depends to a large extent on presence and *expected response* of competitors to route entry

• "Route Profitability Models"

- Computer models designed to perform such route evaluations, but ability to integrate competitive effects is limited
- Profit estimates entirely dependent on assumptions used

Example: Airline "Profit Manager"

5

Route Evaluation Issues

• Economic considerations dominate route evaluation:

- Forecasts of potential passenger and cargo demand (as well as expected revenues) for planned route are critical to evaluations
- Origin-destination market demand is primary source of demand and revenues for a given route, but far from the only source
- In large airline hub networks, traffic flow support to the new route from connecting flights can make it profitable
- Airline's market share of total forecast demand for the new route depends on existence of current and expected future competition
- The fundamental economic criterion for a planned route is potential for <u>incremental</u> profitability in the short run, given the opportunity cost of taking aircraft from another route

Practical and Strategic Issues

• Practical considerations can be just as important:

- Technical capability to serve a new route depends on availability of aircraft with adequate range and proper capacity
- Performance and operating cost characteristics of available aircraft in the airline's fleet determine economic profitability
- If the route involves a new destination, additional costs of airport facilities, staff re-location, and sales offices must be considered
- Regulations, bilaterals, and limited airport slots can impose constraints on new route operations, to the point of unprofitability
- Strategic considerations can overlook lack of route profit:
 - Longer term competitive and market presence benefits of entering a new route even if it is expected to be unprofitable in short run

Route Evaluation Example: Montreal-Milan

• Case Study – Potential introduction of new daily non-stop flights between Montreal and Milan:

- No current year-round non-stop
- But many connecting options e.g., LHR, FRA, JFK, YYZ, etc.

Aircraft Type	B767-300ER	
Number of Seats	210	
Total Annual Flights (e	each direction)	358
(Reflects 98% comple	etion of daily schedule)	
Block Hours YUL to MXP		08:00
Block Hours MXP to YUL		09:00
Non-stop miles YUL/N	IXP	3800

Estimated Operating Costs

Aircraft Operating Costs per Block-Hour:					
Crew Cost	\$	1,050			
Fuel/Oil	\$	4,975			
Ownership	\$	825			
Maintenance	\$	975			
Total per Block-Hour	\$	7,825			
Indirect Operating Cos	<u>sts</u>				
Passenger Service			0.018	per RPM	
Traffic Servicing			\$24	per Enplanement	
Aircraft Servicing			\$1,800	per Departu	ure
Promotion and Sales			9.00%	of Passenger Revenues	
General and Administrat	tive		\$0.002	2 per ASM	

Montreal-Milan Revenue Estimates

	ANNUAL	Prorated Average	TOTAL
DEMAND AND FARE ESTIMATES FOR YEAR	DEMAND	<u>One Way Revenue</u>	REVENUE
Total YUL-MXP Local O-D passengers (both directions)	106,000		
Expected Market Share for one daily flight	70.00%		
Local YUL-MXP passengers on new flight	74,200	\$585	\$43,407,000
Additional Traffic			
Connections North American cities behind YUL to/from MXP	25,000	\$490	\$12,250,000
Connections to/from YUL beyond MXP	12,500	\$445	\$ 5,562,500
Connections behind YUL to/from destinations beyond MXP	4,500	\$375	\$ 1,687,500
Total passengers (both directions)	116,200		\$62,907,000
Additional Cargo Revenue 10 percent	of passenge	r revenue	\$ 6,290,700
		TOTAL REVENUES	\$ 69,197,700

Estimated Annual Operating Profit

Annual Flights	716
Block Hours	6086
RPMs	441,560,000
Passenger Yield	0.1425
ASM	571,368,000
Seat Departures	150360
Passengers Enplaned	116,200
Average Load Factor	77.28%
DIRECT OP COSTS	¢ 47 600 050
PAX SERVICE	\$47,622,950 \$7,948,080
TRAFFIC SERVICE	\$ 2,788,800
AIRCRAFT SERVICE	\$ 1,288,800
PROMOTION/SALES	\$ 5,661,630
GEN ADMINISTRN	\$ 1,142,736
OPERATING COSTS	\$ 66,452,996
OPERATING PROFIT	\$ 2,744,704
OPERATING MARGIN	4.0%

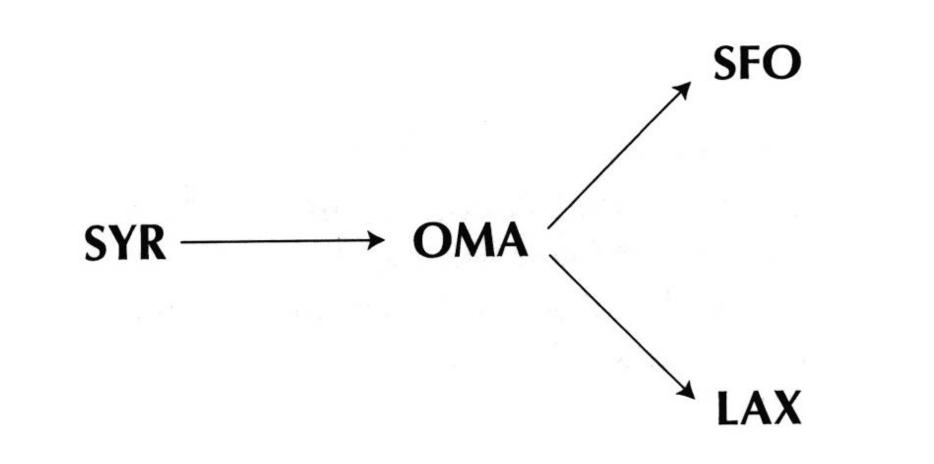
Measuring Route "Profitability"

• Airline costs are driven by fleet and flight schedule

- Fleet drives fixed costs (capital costs) and variable cost rates (fuel burn rates, maintenance rates)
- Flight schedule drives utilization and thus variable costs
- Costs are incurred on a flight basis and on a network basis

• Airline revenues are driven by O-D markets

- Prices are set by competitive considerations or by regulation
- Revenues are earned on a passenger itinerary basis


• Scheduling decisions are often made at the route and flight departure level

 Airline managers must decide which flight legs to remove so that other flight legs can be added

Approaches to Flight Profit Measurement

- Ideally, add/change/remove a flight leg and then measure the profitability given that the rest of the network can be re-optimized
 - Captures interactive or network effects of both costs and revenues
 - Not easy as it requires a good model of the entire operation
- Another approach allocate all costs and revenues on a flight leg basis and then treat each leg as being independent of the rest of the network
 - Allocation schemes are always subjective
 - Does not capture network effects, very important in most cases
 - But, much easier to conceptualize

Sample Network (Baldanza Article)

Flight-Level Profitability

- Incremental Revenues
- Incremental Costs
- Measures of Profitability
- Network Contributions and Costs

Incremental Revenues (SYR-OMA)

• Two sources of incremental passenger revenues

- Passengers boarding in SYR and deplaning in OMA (Local Revenue)
- Passengers boarding in SYR and connecting in OMA to LAX or SFO (Connecting Revenue)

Connecting O-D revenues allocated to each flight leg

- Proration methodology needed to split O&D fare into component parts (e.g. mileage, ratio of full fares)
- Or, assign total connecting O-D fare to flight leg being analyzed
- Implicit assumption is that all revenues from a flight segment will be lost if the segment is cancelled
 - Reality is that airline might recapture some of this revenue

Incremental Costs (SYR-OMA)

- Variable Operating Costs
- Aircraft Ownership Costs
 - Equivalent leasing costs based on duration of flight segment
- Overhead and Non-Operating Costs
 - Equivalent share of other fixed costs based on duration of flight segment
- Fully allocated flight costs equals the variable operating costs plus the aircraft ownership costs plus the allocated overhead and non-operating costs.

Network Contributions and Costs

Contributions to Rest of Network

 Additional revenue on other segments due to presence of SYR-OMA segment

Costs to Rest of Network

- Cost of processing SYR connecting passengers at OMA
- Incremental cost of having more passengers on the connecting segments out of OMA
- Opportunity Costs of selling seats beyond OMA, which could have been occupied by passengers from other O-D markets (known as "network displacement costs")

Revenues & Costs for Sample Network

•	Local SYR-OMA O-D revenue:	\$6,000
٠	Connex prorated to SYR-OMA:	\$1,500
٠	Connex proration to other legs:	\$4,000
•	Variable operating costs:	\$4,500
•	Aircraft ownership costs:	\$2,000
•	Allocated overhead & non-operating costs:	\$1,500
•	Network variable costs:	\$ 700
•	Network opportunity costs:	\$ 500

SYR-OMA Profitability for Sample Network

- Variable Leg Profitability with Network Contribution:
- Variable Leg Profitability with Network Contribution and Opportunity Costs:
- Variable Leg Profitability with Aircraft Ownership and Network Contribution:
- Variable Leg Profitability with Network Contribution, Aircraft Ownership and Opportunity Costs: \$3,800

\$6,300

\$5,800

\$4,300

SYR-OMA Profitability for Sample Network

 Fully Allocated Profitability with **Network Contribution:** \$2,800 Fully Allocated Profitability with **Network Contribution and** \$2,300 **Opportunity Costs:** Variable Leg Profitability: \$3,000 Variable Leg Profitability with **Aircraft Ownership:** \$1,000 **Fully Allocated Leg Profitability:** (\$ 500)

What is the right profitability measure?

Decision Process	Relevant Profitability Measure	Comments
Short-term scheduling optimization	Variable with network contribution	In the very short term, ownership and overhead costs are fixed. Flight and market
		level need the network contribution to be useful.
and the second	lash 17 - Angel Ins	se attelle se se su se replété at his restépolégies?
Middle-term scheduling optimization	Variable plus ownership with network contribution	In the middle term, aircraft may be fungible.
Hub profitability for a single month	Variable profitability, no network contribution	In aggregation, adding network contribu- tions would double-count revenues.
Hub profitability for six months	Variable plus ownership, no network contribution	A combination of the middle-term scheduling and single-month hub profits example.
Hub viability	Fully allocated profitability	Over time, every cost is variable.